Note 2. The adjoint representation Lie groups, 2012

Let G be a Lie group with Lie algebra g. Recall from Geometry 2 that for a pair
X,Y € g we define the Lie bracket [X,Y] € g by the commutator rule

(1) [(X,Y]f:=X(Y[f)-Y(X[)

for all functions f € C*°(G).
In the notes by Erik van den Ban the element [X,Y] is defined differently (see
Definition 4.8). Recall that for g € G one defines

Ad(g):g =g
as the differential at e of the conjugation map = — gxg~' from G to G, and
ad : g — End(g)
as the differential at e of
Ad: G — End(g).

Finally one defines [X,Y] = ad(X)Y".
It is the purpose of this note to show that the two definitions of [X,Y] agree.
Reserving the notation [X, Y] for the element defined by (1), we want to prove

Theorem. The relation [X,Y] = ad(X)Y holds for all X,Y € g.
Proof. The following lemma will be used several times.

Lemma. Let X be a left invariant vector field on G. Then X (g) is the derivative
at t =0 of the curve t — gexp(tX), that is,
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for g€ G and f € C™(G).

Proof. For g = e this follows directly from Lemma 3.6(a). The general case is
reduced to g = e by means of the left invariance. [J

By consecutive applications of (2) we derive
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We change the order of the differentiations in the first term and the sign of ¢ in the
second term. Then

B d
~ds

d

xYN0=+| =

(f(gexptX expsY) + f(gexpsY exp—tX))
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Next (with s fixed) we use the rule
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on the C*°-function F(z,y) = f(gexpxX exp sY exp —yX), and conclude
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By Lemma 4.3
exptX exp sY exp —tX = exp(Ad(exptX)sY)

and hence (after another change of the order of differentiations)

([X,Y]f)(g f(gexp(s Ad(exptX)Y)).
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Using (2) again, we conclude
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The map Z +— Zf(g) is linear, and hence
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where the differentiation now takes place in g, before the application to f. By
Definition 4.5 we have
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in g, and hence we finally infer
(X, Y]f)(9) = ((ad(X)Y) f)(9)-
Since g and f were arbitrary, we conclude that [X,Y] =ad(X)Y. O
HS



