Let G be a Lie group with Lie algebra \mathfrak{g}. Recall from Geometry 2 that for a pair $X, Y \in \mathfrak{g}$ we define the Lie bracket $[X, Y] \in \mathfrak{g}$ by the commutator rule

$$
\begin{equation*}
[X, Y] f:=X(Y f)-Y(X f) \tag{1}
\end{equation*}
$$

for all functions $f \in C^{\infty}(G)$.
In the notes by Erik van den Ban the element $[X, Y]$ is defined differently (see Definition 4.8). Recall that for $g \in G$ one defines

$$
\operatorname{Ad}(g): \mathfrak{g} \rightarrow \mathfrak{g}
$$

as the differential at e of the conjugation map $x \mapsto g x g^{-1}$ from G to G, and

$$
\text { ad }: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})
$$

as the differential at e of

$$
\operatorname{Ad}: G \rightarrow \operatorname{End}(\mathfrak{g})
$$

Finally one defines $[X, Y]=\operatorname{ad}(X) Y$.
It is the purpose of this note to show that the two definitions of $[X, Y]$ agree. Reserving the notation $[X, Y]$ for the element defined by (1), we want to prove

Theorem. The relation $[X, Y]=\operatorname{ad}(X) Y$ holds for all $X, Y \in \mathfrak{g}$.
Proof. The following lemma will be used several times.
Lemma. Let X be a left invariant vector field on G. Then $X(g)$ is the derivative at $t=0$ of the curve $t \mapsto g \exp (t X)$, that is,

$$
\begin{equation*}
X f(g)=\left.\frac{d}{d t}\right|_{t=0} f(g \exp t X) \tag{2}
\end{equation*}
$$

for $g \in G$ and $f \in C^{\infty}(G)$.
Proof. For $g=e$ this follows directly from Lemma 3.6(a). The general case is reduced to $g=e$ by means of the left invariance.

By consecutive applications of (2) we derive

$$
\begin{aligned}
& ([X, Y] f)(g) \\
& =\left.\frac{d}{d t}\right|_{t=0} Y f(g \exp t X)-\left.\frac{d}{d s}\right|_{s=0} X f(g \exp s Y) \\
& =\left.\left.\frac{d}{d t}\right|_{t=0} \frac{d}{d s}\right|_{s=0} f(g \exp t X \exp s Y)-\left.\left.\frac{d}{d s}\right|_{s=0} \frac{d}{d t}\right|_{t=0} f(g \exp s Y \exp t X)
\end{aligned}
$$

We change the order of the differentiations in the first term and the sign of t in the second term. Then

$$
([X, Y] f)(g)=\left.\left.\frac{d}{d s}\right|_{s=0} \frac{d}{d t}\right|_{t=0}(f(g \exp t X \exp s Y)+f(g \exp s Y \exp -t X))
$$

Next (with s fixed) we use the rule

$$
\left.\frac{d}{d t}\right|_{t=0}(F(t, 0)+F(0, t))=\left.\frac{d}{d t}\right|_{t=0} F(t, t)
$$

on the C^{∞}-function $F(x, y)=f(g \exp x X \exp s Y \exp -y X)$, and conclude

$$
([X, Y] f)(g)=\left.\left.\frac{d}{d s}\right|_{s=0} \frac{d}{d t}\right|_{t=0} f(g \exp t X \exp s Y \exp -t X)
$$

By Lemma 4.3

$$
\exp t X \exp s Y \exp -t X=\exp (\operatorname{Ad}(\exp t X) s Y)
$$

and hence (after another change of the order of differentiations)

$$
([X, Y] f)(g)=\left.\left.\frac{d}{d t}\right|_{t=0} \frac{d}{d s}\right|_{s=0} f(g \exp (s \operatorname{Ad}(\exp t X) Y))
$$

Using (2) again, we conclude

$$
([X, Y] f)(g)=\left.\frac{d}{d t}\right|_{t=0}\{((\operatorname{Ad}(\exp t X) Y) f)(g)\} .
$$

The map $Z \mapsto Z f(g)$ is linear, and hence

$$
\left.\frac{d}{d t}\right|_{t=0}\{((\operatorname{Ad}(\exp t X) Y) f)(g)\}=\left(\left(\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}(\exp t X) Y\right) f\right)(g)
$$

where the differentiation now takes place in \mathfrak{g}, before the application to f. By Definition 4.5 we have

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}(\exp t X) Y=\operatorname{ad}(X) Y
$$

in \mathfrak{g}, and hence we finally infer

$$
([X, Y] f)(g)=((\operatorname{ad}(X) Y) f)(g)
$$

Since g and f were arbitrary, we conclude that $[X, Y]=\operatorname{ad}(X) Y$.

